Permeable Reactive Barriers

September 12, 2002 NJDEP Public Hearing Room Sponsors: NJDEP & ITRC

1:00 - 1:15	Welcome & ITRC Update
	Brian Sogorka, NJDEP Remediation Technology Manager

1:15 - 3:45 Technical Program

Matthew Turner, NJDEP, Moderator

1:25 - 2:10 Overview of Granular Iron PRBs for VOC Treatment

Michael L. Duchene, M.A.Sc., P.Eng., EnviroMetal Technologies, Inc.

2:10 - 2:55 Injection of Zero Valence Iron Powder for Insitu Chemical Reaction

John J. Liskowitz, ARS Technologies, Inc.

2:55 - 3:40 Permeable Reactive Barriers Design and Installation

Paul Boyajian and Steve Brauner, Parsons

3:40 - 3:45 Wrap-up

Active Technical Teams

- Alternative Landfill Technologies
- Brownfields
- * Constructed Wetlands
- Contaminated Sediments
- Dense Nonaqueous Phase Liquids
- Diffusion Samplers
- * DOE Gate 6 Technologies
- * In Situ Bioremediation
- MTBE-Contaminated Groundwater
- Permeable Reactive Barriers
- RadionuclidesRemedial Process Optimization
- Sampling, Characterization, and Monitoring
- · Small Arms Firing Range
- Unexploded Ordnance

Contacts Web Site: http://www.itrcweb.org Cochairs, ITRC Board of Directors: Brian C. Griffin (405) 530-8995 Ken Taylor (803) 896-4011 SC Department of Health and Environmental Control taylorgk@dhec.state.sc.us Program Director: Rick Tomlinson rickt@sso.org (202) 624-3669

ITRC Permeable Reactive Barriers Team

Documents

- 1) Regulatory Guidance for Permeable Reactive Barriers Designed to Remediate Chlorinated Solvents December 1999 (2nd Edition)
- 2) Regulatory Guidance for Permeable Reactive Barriers Designed to Remediate Inorganic and Radionuclide Contamination September 1999

ITRC

Permeable Reactive Barriers Team

Documents

- 3) Design Guidance for Application of Permeable Barriers for Groundwater Remediation March 2000
 - 4) Draft Report Permeable Reactive Barrier Performance and Guidance April 25, 2002

Permeable Reactive Barriers for Groundwater Remediation Presented by Steve Brauner, Ph.D. Paul Boyajian, P.E. PARSONS Presented to NJDEP SRP September 12, 2002

Reactive Media

- ◆ Purpose: Alter or enhance local subsurface environment to favor contaminant removal
- ◆ Contaminant removal mechanisms
 - Abiotic degradation
 - Enhanced biodegradation
 - Precipitation
 - Sorption
- ◆ Some materials/processes are patented

Reactive Media										
		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	active Ho	Sanic Car	c/o	Delivery 120	Jitos			
	CAHs	30->	20->	20→	30→					
	Metals Cr(VI), As, Cu, Ni	30->	3 0->			33->				
	Acid Mine Drainage		33->							
	PHCs			30→	39→					
	Nitrate		20→				Parsons			

Pre-design Investigation

- ◆ Purpose:
 - Identify potential backfill materials;
 - Perform treatability testing, as needed;
 - Obtain subsurface information for design and construction purposes;
 - Estimate local groundwater velocity; and
 - Identify subsurface anomalies.

- Key material
- Excavation effort
- Boring spacing
- Geochemical
 - Contaminants of concern
 - Redox condition - "Inhibitor" compounds

Pre-design Lab Testing

to courtesy of ETI

- Treatability Testing
 - Bench-scale
 - Rate of contaminant removal
 - Compare various media types/combinations
 - Particularly important when "inhibitor compounds" are present
- Biopolymer slurry compatibility
 - Estimate 'in-trench' stability time via viscosity measurements
 - Evaluate various biopolymers
 - Necessity of additives

Primary Design Documents

- ◆ Alignment drawing(s)
- ◆ Cross-section drawing(s)
- ◆ Monitoring locations
- ◆ Technical specifications

Installation Techniques

- ◆ Trenching
 - Traditional (open) trenching to water table depth
 - -Continuous trenching to 25' feet below land surface
 - Custom-built machinery that excavates and places backfill in
 - -Biopolymer slurry trenching to 100' feet below land surface or more
 - Provides temporary support during excavation, allowing trench to be backfilled with a material of choice
- ◆ Injections
 - —Pnuematic
 - -Liquid

Excavation in the "dry" can lead to failure, so...

... use a slurry to support the walls of the trench.

- ◆ Influent contaminants
 - [TCE] ~ 4 ppm
- [Cr(VI)] ~ 10 ppm ◆ Zero valent iron backfill

 - TCE removal via abiotic reductive dechlorination (Irreversible)
 - Cr(VI) removal via chemical precipitation (Potentially reversible)

Cr(VI) Removal Pathway $Cr(VI) \rightarrow Cr(III)$ More Soluable Less Soluable

- PRBs may offer a cost-effective method for in situ groundwater treatment through reduced O&M costs;
- Various reactive media are available with selection based on contaminants of concern and existing/desired groundwater redox condition; and
- Installation technique for reactive media in situ placement depends on site's physical constraints, plume dimensions, and geology.

Parsons

Thank you.

Questions?

Steve Brauner, Ph.D.

PARSONS

Tel. 781-401-3200 Fax 781-401-2575

steve.brauner@parsons.com

Overview of Granular Iron PRBs for VOC Treatment

Michael L. Duchene Senior Engineer EnviroMetal Technologies Inc.

Chlorinated Organic Degradation Using Granular Iron PRBs

- · Developed and patented by the University of Waterloo
- Commercialized through EnviroMetal Technologies Inc.
- · Over 75 field-scale installations
- First full-scale application completed February 1995
- · Sites in North America, Europe, Australia and Japan

envirometal technologies inc.

Advantages

Passive, Simple Process

· degrades a wide range of chlorinated organics

"The most intriguing idea that has emerged in the remediation field."

Lynn Roberts, Ph.D.
The Johns Hopkins University

- · contaminants destroyed
- nontoxic end products
- · no energy or equipment
- · conserves water
- conserves water
- · allows productive use of site

envirometal technologies inc.

L Granular Iron

Grain size: -8 to +50 mesh Bulk density: 150 lb/ft³ Surface area: ~ 1.0 m²/g Hydraulic conductivity: 5 x 10⁻² cm/sec (142 ft/day) Cost: ~ \$350 ton + shipping

envirometal technologies inc.

■ VOCs Treated in Iron PRBs

envirometal technologies inc.

■ Degradation Process

$$\begin{matrix} \overset{H}{\overset{}_{C}} \overset{C}{\overset{}_{C}} \overset{C}{\overset{}_{C}} \overset{C}{\overset{}_{C}} \overset{H}{\overset{}_{C}} \overset{H}{\overset{}_{C}} \overset{C}{\overset{}_{C}} \overset{C}{\overset{}_{C}} \overset{H}{\overset{}_{C}} \overset{H}{\overset{}_{C}} \overset{C}{\overset{}_{C}} \overset{C}{\overset{}_{C}} \overset{H}{\overset{}_{C}} \overset{H}{\overset{}_{C}} \overset{C}{\overset{}_{C}} \overset{C}{\overset{}_{C}} \overset{H}{\overset{}_{C}} \overset{H}{\overset{}_{C}} \overset{C}{\overset{}_{C}} \overset{H}{\overset{}_{C}} \overset{H}{\overset{}_{C}} \overset{C}{\overset{}_{C}} \overset{C}{\overset{}_{C}} \overset{H}{\overset{}_{C}} \overset{H}{\overset{}_{C}} \overset{C}{\overset{}_{C}} \overset{C}{\overset{}_{C}} \overset{H}{\overset{}_{C}} \overset{H}{\overset{}_{C}} \overset{C}{\overset{}_{C}} \overset{C}{\overset{}_{C}} \overset{H}{\overset{}_{C}} \overset{C}{\overset{}_{C}} \overset{C}{\overset{}_{C}} \overset{H}{\overset{}_{C}} \overset{C}{\overset{}_{C}} \overset{C}{\overset{}_{C}} \overset{C}{\overset{}_{C}} \overset{H}{\overset{}_{C}} \overset{C}{\overset{}_{C}} \overset{C}{\overset{}_{C}} \overset{C}{\overset{}_{C}} \overset{C}{\overset{}_{C}} \overset{C}{\overset{}_{C}} \overset{C}{\overset{}_{C}} \overset{C}{\overset{C}} \overset{C}{\overset{C}}{\overset{C}} \overset{C}{\overset{C}} \overset{C}} \overset{C}{\overset{C}} \overset{C}{\overset{C}} \overset{C}{\overset{C}} \overset{C}{\overset{C}} \overset{C}{\overset{C}} \overset{C}{\overset{C}}{\overset{C}} \overset{C}{\overset{C}}{\overset{C}} \overset{C}{\overset{C}} \overset{C}{\overset{C}} \overset{C}{\overset{C}} \overset{C}} \overset{C}{\overset{C}} \overset{C}{\overset{C}} \overset{C}{\overset{C}} \overset{C}} \overset{C}{\overset{C}} \overset{C}{\overset{C}}$$

- Reaction is abiotic reductive dehalogenation
- · Reaction occurs on surface of iron
- Prominent pathway is the Beta-elimination pathway (through chloroacetylene and acetylene)

envirometal technologies inc.

Precipitate Formation and Effect

- carbonate precipitates begin at upgradient interface
- long-term laboratory simulations indicate precipitate formation over several years cause some permeability loss and significant reactivity loss
- no evidence of hydraulic / reactivity losses in the field over 7 years of operating record

envirometal technologies inc.

PRB Implementation – ETI Involvement

- 1. Cost Estimate
- 2. Site Data Assessment
- 3. Bench-Scale Test / ETI Database
- Design / Costing / Construction
 site license fee provides use of patented technology at a site
- 5. Long-Term Performance Monitoring

envirometal technologies inc.

Column Treatability Study FILINIA SOLUTION RESERVOR THE LOW PORTS SAMPLING PROFITS Environmental technologies inc.

■ Treatment Zone Dimensions

Iron Thickness = Residence time (RT) required X
Flow Velocity (FV) through treatment zone
Iron Volume = Thickness x Width x Sat. Depth
Safety factor / probabilistic design?

envirometal technologies inc.

Design Considerations

- · groundwater velocity
- · plume dimensions width, depth, saturated depth
- · residence time requirement PRB flow through width
- geology
- · installation method

envirometal technologies inc.

■ Treatment Cost - 1999 Installations Construction Iron **Backhoe Construction, OH** 8 ppm TCE 20 ft deep, 200 ft long \$36,000 \$28,000 \$64,000 BioPolymer Trench, NH 10 ppm cDCE; 5 ppm TCE; 1 ppm VC 33 ft deep, 150 ft long \$200,000 \$130,000 \$330,000 Trench Box, WY 21 ppm TCE; <1000's ppb cDCE, VC 23 ft deep, 565 ft long \$255,000 \$745,000 \$1,000,000 envirometal technologies inc.

■Full-Scale System Construction

35 Continuous Reactive Walls

- biopolymer (11)
- cofferdam (8)
- continuous trencher (6)
- hydrofracturing (3)
- supported excavation (3)
- open trench (2)
- trench box (1)
- jetting (1)

12 Funnel and Gate Systems

- slurry wall (6)
- sheet piling (4)
- HDPE (2)
- 3 In-situ Reactive Vessels

enviro**metal** technologies inc.

envirometal technologies inc.

Continuous PRB Installed June/July 2001 Instal

Unsupported Excavation Trench excavated without support Formation does not collapse Iron or iron sand mix placed directly into excavation Inexpensive construction Limited to shallow depths

Installation In Fractured Bedrock

- · Refractive flow and treatment
 - discrete blasting creating high K zones
 - in-situ treatment zone
- · Pneumatic fracturing and injection
- Blasting and excavation
- · Array of boreholes
- · Permeation grouting (fracture infilling)
- · Pump-and-treat with above-ground system

envirometal technologies inc.

Treating DNAPL Source Zone

- Reduced permeability results in:
 - long residence time for DNAPL dissolution and degradation by iron
 - low VOC mass flux out of source zone

envirometal technologies inc.

■ Treating DNAPL Source Zone

 Iron and clay (bentonite/kalonite) mixed into source zone

envirometal technologies inc.

Long-term PRB Performance ■ Long-term PRB Performance

- consistent performance with respect to VOC degradation rates
- greater than 7 year track record
- no evidence of microbial fouling under flowing conditions
- precipitate formation will influence long-term performance

envirometal technologies inc.

Hydraulic Performance Issues

- · Hydraulic by-pass of contaminants due to:
 - · incomplete plume capture
 - · change in seasonal flow direction
 - · underflow or overflow
 - Permeability reduction due to construction
- Reduced residence time due to flow velocity variation along line of installation

envirometal technologies inc.

PRB Operations and Maintenance

- Ultrasound
- Hydraulic pressure pulsing
- Replacement

Lump sum should be budgeted into O&M every 10 years

envirometal technologies inc.

Sources of Information

- · www.rtdf.org
- · www.eti.ca
- · cgr.ese.ogi.edu/iron
- · www.itrcweb.org
- · www.prb-net.org
- · www.epa.gov/tio

envirometal technologies inc.

For further information please contact us:

EnviroMetal Technologies Inc. 745 Bridge Street West, Suite 7 Waterloo, Ontario, Canada N2V 2G6

Tel: 519-746-2204 Fax: 519-746-2209 email: eti@eti.ca web: www.eti.ca

envirometal technologies inc.

Zero Valence Iron Injection for Source Treatment

- "An Advanced Solution for In-situ Chemical Reduction"
- · Presented by John Liskowitz
- President ARS Technologies Inc.

Effective In Situ Chemical Reduction Using ZVI Injection Is Dictated by Four Elements

Selection of Material which provides treatment performance, cost effectiveness and no hazardous effect.

Contact between the injected ZVI and the target compound

Quantity of ZVI Powder injected in the subsurface

 $\begin{tabular}{ll} \textbf{Uniformity} & of injected ZVI to mirror target contaminant distribution \end{tabular}$

Mechanism 1: Fluidization of Geologic Matrix -Typical in Sand/Gravel Media Mechanism 2: Fluidization w/some discrete channelization -Typical in Sands/Silts/Minor Clay Mechanism 3: Discrete Channelization/Fracture Emplacements -Typical in Clays/Fracture Rock Media

FeroxsM Material is a Highly Reactive Pure Iron Powder

- Irregular Shape Provides Maximum Surface Area
- FDA Certified 95+% Pure
- Trace Carbon -Provides Enhanced Reaction Benefits
- 40-80 um size particles
- Cost \$1.45 1.70/lb

Current Technology Status

- 22 laboratory treatability tests completed
- 12 field systems completed

 Largest 45,000 square feet

 Deepest 110 feet
- 6 systems currently being installed

Site Background

- Historic discharge of TCE into a weathered shale/siltstone formation
- Dual-Phase Extraction (DPE) enhanced by Pneumatic Fracturing installed and operated 1995-2001
- In six years = \sim 400 lbs of VOC from site
- TCE reduced from 170,000 ug/L to less than 3,000 ug/L in Source Area
- but....Mass Removal Rate of DPE went asymptotic

Project Summary and Future Status

- Ferox $^{\text{\tiny SM}}$ treating residual TCE not addressed by SVE/P&T system
- RAW Submitted proposing expansion of pilot-test zone injections in 2003
- Application cost \$5 -\$8 per pound of iron Emplaced

Summary of Results

- TCE Reduced by up to 99%
- No rebound observed in most wells 10 months after injections
- · Geochemical parameters responded to ZVI as expected:
 - DO decreased to zero in nearly all wells
 - pH increased by 0.2 to 1.8 s.u.
 - · ORP decreased significantly in all wells by 79 to 459 mv
- · Injection pressure less than 120 psi.
- Injection pressure influence generally uniform in all directions

Case Study #2- NASA's MSFC Source Area 2 Huntsville, Alabama

Source Area 2 Site Background and History

- •Located adjacent to former Rocket Test Stand
- •Holding Pond Used for Coolant Water Believed Source of TCE
- Impacted Area along sewer line originating from Holding Pond
- TCE source area and groundwater plume
- Presence of UXO prevented digging at surface
- Industrial sewer, high pressure gas line present in area

Project Summary

- 20,000 lbs of Ferox Material Injected
- · Target Depths to 37 feet
- Gas and Slurry Injected 60+ feet Using
- · Pressures ranging from 60 to 120 psi
- Projected Cost For Field Application \$17/Pound Iron Injected

Site Background

- · Plating Shop, source of Cr+6 in groundwater
- Electrical Vault and Corridor under building flooded with high levels of Cr+6 solution
- Previous Treatment Include removal of old plating shop, contaminated soil, contaminated water in vault, and vault
- Geology Consists of fine sands and sandy silts interbedded with sand to confining unit
- · Thin plastic clay stringers also present

Cr⁶⁺ Pre-Treatment Profile View - Cross Section

How Safe Injections Were Applied Under Building

- Thorough review of structural drawings and utility maps
- Computer Modeling to Assess Movement Cause and Effect Loads
- · Documentation of Pre-existing Condition
- Develop Site Empirical Data Prior to injecting within Building.

Project Summary

- Injections completed January 2002
- Minimal disruption to tenant activities in building (no lost time for tenant)
- · 37,000 lb ZVI injected
- Post-treatment GW sampling monitoring Cr+6 and GeoChemical Parameters

Progress/Results to Date

- Center MW shows 70% reduction in Cr+6 concentrations
- Water quality parameters change more prevalent in Deep Wells compared to Shallow Wells
 - D.O. decreased to zero in three of four MW's
 - Hydrogen increased at deep well (14 to 29,000 nM)
 - ORP reduction to negative in deep wells (-)
 - pH increased from 6.07 to 8.84 (5 months)
 - Potential round of polish injections for Shallow Zone Planned

Interesting Observations

- ⇒ GW Geo-Chem. Data shows Delayed Effect Microfilm Coating on Iron Particles? (Reference Farrell et. al ES&T 2001)
- ⇒ Measurement of Hydrogen (Microseeps) good parameter to monitor (14 to 29,000 nM increase in Center of Source Area)
- ⇒ Total Cr measurement in ground water decreasing. (Migration or Sampling Method Issues???)

Ferox sm Applications in New Jersey

Site Desc.	Type	Scope	Status	Cost Factor	Results
1999 ISRA Site	Pilot Test	150 ft by 20 ft	2.0+ years	\$35 /lb Injected	Iron May be
Passaic County, NJ	CVOC's	4,400 lbs Fe			90% TCE Reduction Prior to Rebound
2000 DOD Site Northwest NJ	Pilot Test Cell	30 by 60 feet	2.0 years	\$15/lb Injected	Downgradient VC reduced 85%, Cis- DCE 94%
	VC, Cis-DCE	10,000 lbs Fe			Inside Reaction Zon 100%
2001 ISRA Site Fractured Bedrock	Pilot Test	100 by 40 ft. 4,000 lbs Fe	1.0 Year	\$6 / Ib Injected	95% + Reduction within Treatment Zone
Central N.J.	CVOC's				GW Geochem Changed
2002 Burnt Fly Bog, Marboro NJ	Lab BenchScale PCB's and Pb	N/A	Draft Report Sub. to EPA	N/A	Complete Pb reduction, PCB Partial Reduction

THE END

- www.arstechnologies.com
- www.ifracture.net